

The Beauty of MBSE

Reducing Efforts by extending the Scope

Florian Beer
Robert Bosch GmbH, Stuttgart, Germany

Contact: florian.beer@bosch.com

Abstract

Model-based system and software engineering aims to provide a single source of truth for

engineers, facilitating alignment between partners and disciplines. By formalizing information in

models, it becomes machine-readable and persistent.

However, in many cases, MBSE is seen as a hurdle by development teams. The introduction of MBSE

often comes with "big-upfront" ideas driven by architects, which can hinder the innovation process.

Adopting agile approaches with pull-request-based iterations and quality gates with automated

verification builds connection points to the experience of code-centric engineers.

To demonstrate the benefits of MBSE without imposing large-scale rollouts, we provide an example

in the context of safety-relevant products. AbRA extends existing standard models with a meta-

element for failure modes, the development team can perform safety analysis without the need for

extensive post-development workshops. This approach simplifies the process and shifts the

workload from analysis workshops to the development teams. It also promotes competence within

the team, reduces efforts, and improves risk mitigation.

By adding a package-based architecture exchange, architects from different organizations can work

on one product. The relevant parts of model for the next integration level can be easily shared while

the design details, i.e. of safety analysis can be kept confidential.

mailto:florian.beer@bosch.com

Contents
Architecture-based Risk Analysis .. 3

Normative Requirements towards Safety Analysis... 3

The core of AbRA .. 3

AbRA as UML Meta-Model extension ... 4

Tool-Box implementation in Enterprise Architect .. 6

Modelling Concept .. 8

SysMLv2 definition .. 10

Open-Source repository for AbRA .. 10

Package-based Collaboration.. 11

Conanfile for packages .. 11

Conanfile for product architecture ... 12

Workflow for delivery ... 13

Workflow for composition .. 14

Architecture-based Risk Analysis

Normative Requirements towards Safety Analysis
If we follow the established approaches for safety analysis, we usually have 3 architectures:

• The real architecture of the implemented product

• The documented architecture of the product, e. g. the system and software architecture

documentation

• The analyzed architecture, e. g. in the FMEA documentation

As these three architectures in the real word often have differences, for ASIL-C and ASIL-D not only

inductive but also a deductive analysis is required. As the inductive and deductive way of thinking

help to detect weaknesses in the design, there is no requirement to maintain the analysis in different

documents.

The core of AbRA
The goal in designing AbRA has been to facilitate risk analysis directly in the architecture model. The

concept of cause-effect-chains has been taken over from the classical approaches. But as the role

Fault/Error/Failure is regularly depending on the element under analysis, only one new element type

is the meta-model has been introduced. To prevent failure propagation, occurrence can be either

prevented by measures in advance or the negative effect be controlled after the initial fault

occurred.

For prioritizing derived actions and judging if the residual risk is acceptable, the severity of the

failure, the probability of occurrence and the confidence in the taken measures have to be taken

into account.

This leads to the simplified meta-model for AbRA as shown in Fig. 1.

Fig. 1 Simplified meta-model for AbRA

AbRA as UML Meta-Model extension
To provide AbRA to architects, the simplified meta-model must be implemented in an UML

conformant way as shown in Fig. 2, Fig. 3, and Fig. 4. This meta-model can be applied to any UML-

compliant modeling tool.

Fig. 2 AbRA meta-model elements

Fig. 3 AbRA meta-model relations

Fig. 4 Meta-constraints for AbRA relations

Tool-Box implementation in Enterprise Architect
To increase the usability, the best way is to create a toolbox and define instantiation
rules to be applied by the software automatically. By defining diagram types (Fig. 5),
quick-linker information (Fig. 6) and a toolbox (Fig. 7), the elements can be used
directly in the working flow.

Fig. 5 Diagram type definitions

Fig. 6 Quick-Linker relations for AbRA

Fig. 7 AbRA toolbox definition

Modelling Concept
As shown in Fig. 8, failure modes have different roles. Failure modes, which are relevant to the user

of an element are referred as public failures. Failure modes originating from single steps are referred

as internal causes. When instantiating an element, its public failures become internal failures as

shown in Fig. 9. To make the cause-effect-chain more readable, internal failures can be introduced as

intermediate steps as shown in Fig. 10.

Fig. 8 Concept of FailureModes

What is seen by

the integrator

Added

elements

Fig. 9 Instantiation of <<FailureMode>>

Fig. 10 Effect chain from internal cause to public failure mode.

SysMLv2 definition
The following snippet shows, how AbRA can be implemented in SysMLv2.

package AbRA_simple_demo {

 import Metaobjects::SemanticMetadata;

 import ScalarValues::*;

 enum def Rating {

 low; medium; high; notRated; noEffect;

 }

 occurrence def FailureMode {

 attribute sev: Rating; //sev = severity

 attribute occ: Rating; //occ = occurrence

 attribute cl[0..1]: Rating; //cl = confidenceLevel

 }

 abstract occurrence failureModes : FailureMode[*] nonunique;

 metadata def <FM> FailureModeMetadata :> SemanticMetadata {

 :>> baseType = failureModes meta SysML::Usage;

 }

 connection def Cause :> Occurrences::HappensBefore {

 end fm_start[*]: FailureMode;

 end fm_end[*]: FailureMode;

 }

 abstract connection causes : Cause[*] nonunique;

 metadata def <cause> CausationMetadata :> SemanticMetadata {

 :>> annotatedElement : SysML::SuccessionAsUsage;

 :>> baseType = causes meta SysML::Usage;

 }

 //Include Failure Modes and references to the actions

 #FM occurrence 'Delayed Request' {

 :>> sev = Rating::high;

 :>> occ = Rating::low;

 :>> cl = Rating::medium;

 ref relevantTo:RequestDrivingGearChange;

 }

 //Include Failure Modes and references to the actions

 #FM occurrence 'Delayed Engagement' {

 :>> sev = Rating::high;

 :>> occ = Rating::low;

 :>> cl = Rating::medium;

 ref relevantTo:EngageDrivingGearRND;

 }

 // now model the failure propagation ... first ... then

 #cause first 'Delayed Request' then 'Delayed Engagement';

}

Open-Source repository for AbRA
To facilitate adoption of AbRA by the engineering community, we created a repository under the

umbrella of Open-MBEE. We want this repository become a living exchange for AbRA and encourage

everyone to try it out and contribute.

https://github.com/Open-MBEE/architecture-based-risk-analysis

Package-based Collaboration
To setup a package-based exchange with Github, for all provided components and the consuming

architectures, according conan recipes and github workflows have to be created. The examples

assume, that the workflows are performed on a runner, which has Python 3.x, Conan 2.0 and

LemonTree.Automation installed.

With this configuration, each component provider can publish a new version of its package by

starting the workflow manually. Every architect with access to the repository can retrieve these

updates with starting the workflow. No local installation of python, conan or maintenance of scripts

by the architects is required. With slight modifications, the workflow can be executed on public,

ubuntu-based runners in the cloud. In that case, even no local runner is required.

Conanfile for packages
The architect of the component has to maintain name and version. LemonTree should be configured

to use the relative folder modelCache as repository.

from conan import ConanFile

from conan.tools.files import copy

class ArchitectureBuildingBlockRecipe(ConanFile):

 name = "some-component"

 version = "1.0"

 exports_sources = "modelCache/*"

 def package(self):

 copy(self, "modelCache/*", self.source_folder,

self.package_folder)

https://github.com/Open-MBEE/architecture-based-risk-analysis

Conanfile for product architecture
The product architect has to maintain the list of required packages. As long as the directory

modelCache exists, the MPMS files will be provided to this location.

import os

import shutil

from conan import ConanFile

from conan.tools.files import copy

class SampleProjectConan(ConanFile):

 name = "sample_project"

 version = "1.0"

 def requirements(self):

 self.requires("some-component/1.0")

 def generate(self):

 shutil.rmtree("modelCache", ignore_errors=True)

 for require, dependency in self.dependencies.items():

 self.copy_model_files(dependency.package_folder)

 def copy_model_files(self, src_folder):

 src_folder = os.path.join(src_folder, "modelCache")

 dest_folder = os.path.join(self.source_folder, "modelCache")

 shutil.copytree(src_folder, dest_folder, dirs_exist_ok=True)

Workflow for delivery
To use the workflow, the action for LTA has to be correctly set and the conan repository

model_repository has to be setup correctly. To prevent leaking of IP, we strongly recommend using a

non-public repository with authentication.

name: Create Conan Package

on:

 workflow_dispatch:

jobs:

 build:

 runs-on: [conan-lta]

 steps:

 - name: Checkout code

 uses: actions/checkout@v2

 with:

 lfs: true

 fetch-depth: 0

 - name: Export MPMS package

 uses: LemonTree.Automation@main

 with:

 Task: MpmsExport

 Mine: Model.qeax

 OutputFile: modelCache

 License: ${{secrets.LTALICENSE}}

 - name: Create package for some-component

 run: |

 conan create ./

 conan upload some-component -r=model_repository

Workflow for composition
The following workflow installs the packages defined by the recipe into the modelCache. The

update_packages.sh script adds/removes changed files in the modelCache to the git repository,

creates a new commit and pushes the changes to the repository.

name: Install Conan Packages

on:

 workflow_dispatch:

jobs:

 build:

 runs-on: [conan]

 steps:

 - name: Checkout code

 uses: actions/checkout@v2

 with:

 lfs: true

 fetch-depth: 0

 token: ${{ secrets.GITHUBTOKEN }}

 - name: Install packages

 run: |

 conan install . -r=repo_cache

 - name: Add changed files to git and push commit

 run: |

 ./tools/update_packages.sh

