

AbRA Architecture-based Risk Analysis

in agile developments (but not only)

Juergen Sauler, Florian Beer

Status quo

Why do we need an alternative method?

AbRA Architecture-based Risk Analysis Why do we need an alternative method?

- The automotive industry is undergoing a transformative shift with the advent of Softwareintensive applications like ADAS, introducing unprecedented complexity within product development
- In the context of agile methodologies, adhering to traditional risk analysis (TRA) approaches is challenging due to rapid release cycles and the continuous evolution of products
- Significant resources are currently invested in CI/CV to accelerate SW deployment. These benefits are significantly diminished if we must wait weeks or months for safety argumentation due to the manual nature of the process

AbRA: Created by developers, optimized for developer needs.

AbRA Architecture-based Risk Analysis

Implementation of the concept

AbRA Architecture-based Risk Analysis Extension of architectural model

- Regular architectural elements
 - Interfaces define the signature and visible behavior
 - Components implement the defined behavior
 - Activities define how the defined behavior is reached by combining actions and decisions
- Integrator (OEM) sees interface and interface behavior

Abstract component structure

AbRA Architecture-based Risk Analysis Extension of architectural model

Extension of architectural model for AbRA

- New architectural element:
 - The FailureMode is the only new item for TRA
 - The ThreatMode would be the only new item to support TARA
- Regular architectural elements
 - Interfaces define the signature and visible behavior
 - Components implement the defined behavior
 - Activities define how the defined behavior is reached by combining actions and decisions

Integrator sees interface, interface behavior and *Public Failures*

AbRA can be used with all architectural models based on UML/SysML

AbRA Architecture-based Risk Analysis The *FailureMode* element

AbRA Architecture-based Risk Analysis How does it look alike in real – one simple example

Just like in classical approaches, **Risk** is determined by

Occurence

e.g. probability of systematic failures

Severity

e.g. severeness of a requirement violation

Confidence

e.g. confidence in defined countermeasure(s)

AbRA risk evaluation is comparable to FMEA risk evaluation and results can be used in the same way

Occurence

- The developer estimates the probability of systematic failures at the architectural element to be analyzed
- is inherited bottom-up through the causeeffect-chain within one architectural level
- Occurence = { Low | Medium | High }

Severity

- is evaluated at the *PublicFailure* level of the architectural element that is analyzed
 - Does a PublicFailure violate a product requirement?
 - How severe is the violation?
- is propagated top-down through the cause-effectchain within one architectural level
- Severity = { Low | Medium | High }

Confidence

- is evaluated at linking of *CounterMeasure* Requirements
 - Does the CounterMeasure prevent or mitigate the linked FailureMode?
 - How confident is the CounterMeasure?
- Prevention measures may cut a causeeffects-chain
- Mitigation measures cannot cut a causeeffects-chain, but only add coverage
- Confidence = { Low | Medium | High }

Risk (Action Priority)

- From Occurence, Severity and Confidence in Prevention/Mitigation an overall Risk or Action Priority rating can be established
- Action Priority can be used for further Risk management activities

*The displayed matrix is a draft. The actual risk rating matrix is not finally defined.

AbRA Architecture-based Risk Analysis Use in ISO 26262 context

- The proposed Architecture-based Risk Analysis method was justified against the analysis requirements of ISO 26262: 2018 part 4, 6, 9
- DEKRA Assessor confirmed method as suitable to fulfil ISO 26262, additional evidence documents were provided from BOSCH to DEKRA
- A formalized concept evaluation report was provided to BOSCH by DEKRA

AbRA Architecture-based Risk Analysis Synergizing AbRA and MBSE

- AbRA itself is intentionelly simple
- Due to ist simplicity, AbRA can fully inherit all the qualities of the architectural model
- And leverages significant advancements in the MBSE environment over recent decades, e.g.
 - Collaborative Support (Continuous Architecture)
 - Continuous Validation (Model checker, Compliance check, ...)
 - Integration into Pipeline (automated quality gates)
- And will capitalize on all future improvements

AbRA's greatest potential benefit is increasing motivation to invest in a high-quality architectural model

How to make AbRA powerful

A good architectural model is the base for a good risk analysis Agile Team Integration (Collaborative Architecture)

- Treat architecture like code, incorporating continuous Integration and Verification
 - Leverage Git's versioning and collaboration capabilities
- Empowers the entire team to collaboratively work on architecture and AbRA

From Architecture as role to Architecture as competence From Quality as role to Quality as competence

A good architectural model is the base for a good risk analysis Collaborative Architecture

G ,	github-actions bot commented 38 minutes ago ✓ No merge conflicts in model Modified Elements in SystemArchitecture: Found 1 Diagrams.			Main branch Series branch Feature branch
<u>ک</u>	Changes requested 2 reviews requesting changes by reviewers with write access. Learn more about pull request reviews.	Show all reviewers	 /merge/	Author 😳 …
	2 changes requested	~		
	A 1 pending reviewer	~	github-actions (bot) commented on Jun 29, 2022	☺ …
	All checks have failed 1 failing check	Hide all checks	Starting auto-merge	
	🗙 🛃 🛛 Pipeline (PullRequest) / docs / build & publish (pull_request) 🛛 Failing after 2m — docs / build & pu	Details	🕞 🐺 merged commit 33187ca into master on Jun 29, 2022	View details Revert
	Merging is blocked Merging can be performed automatically once the requested changes are addressed.		3 checks passed	
	Enable auto-merge Automatically merge when all requirements are met. Learn more		Github-actionsbotcommented on Jun 29, 2022 Merge performed successfully	

Enables distributed Risk Analysis: Locally and in time

18 Jürgen Sauler, Florian Beer | 2024-07-04

Collaborative Architecture: Multiplying the benefits of AbRA: Collaborative Architecture

- Use of LieberLieber LemonTree[®] for MBSE GIT workflow with Sparx Systems Enterprise Architect[®]
 - Diff-based reviews of the models
 - Automated merge of non-conflicting changes
 - Supporting manual resolving of merge conflicts based on model properties
 - Package deployment to other models
- \rightarrow Enabling collaborative architecture

Collaborative Architecture: Support by automated Verification & Validation

- The goal of consistency-checks between architecture, analysis and implementation is only possible by the use of advanced automation
- AbRA benefits from the continuous validation of the model, e.g. each pull-request triggers the
 - Model checker to
 - ensure that modelling guidelines are fulfilled
 - AbRA method is applied correctly
 - Consistency check between architectural model and source code

We can always prove that we have analyzed what we have deployed!

20

Summary

AbRA Architecture-based Risk Analysis Summary

AbRA is intended to create an alternative for classic methods like FMEA in ADAS system projects with the primary goals:

- Ensure rapid alignment between design and risk analysis
- Enabling distributed analysis (locally and in time)
- Ensure Risk Analysis is accurate and up-to-date
- Maximize the use of automation for efficiency
- Integrate with existing methods to enhance effectiveness
- Minimize resource consumption and manual effort

Currently being piloted in highly complex agile development projects (early phase)

AbRA Architecture-based Risk Analysis AbRA will become Open Source

Establish an open-source community to promote AbRA as a standard approach for risk analysis in the industry

Encourage contributions from the community

- Collaborative handling of architecture (contribution with partner aligned)
- Automated architecture verification (potential partners identified)
- Improvement potentials for AbRA identified from broad application

https://github.com/Open-MBEE/architecture-based-risk-analysis

Neutral home as enabler for industry-wide adoption:

providing automation-solutions for a simple adopting in projects

Thank you!

...Questions?

All pictures are created by Dall-E